Ocean internal wave spectra inferred from seismic reflection transects

W. Steven Holbrook¹ and Ilker Fer²

Received 6 June 2005; revised 6 July 2005; accepted 15 July 2005; published 6 August 2005.

1. Introduction

Internal waves affect many important dynamical processes in the ocean. This study examines the role of internal waves in the open ocean, including wave generation mechanisms and wave-slope interactions. The reflection method is remarkable sensitive to fine structure, and this allows for the imaging of temperature contrasts as small as 0.04°C. The reflection spectrums derived from digitized reflection horizons in the open ocean compare favorably to the Garrett-Munk tow spectrum of oceanic internal wave displacements. The main source of the internal wave energy is the interaction of barotropic tidal flows over topography and resuspending sediment. The Bouyancy frequency profiles, N(z) = [-g/ρ dρ/ dz]¹/², where z is depth, ρ is density, were calculated for all XCTD’s (Figure 1).

3. Finestructure and Internal Wave Spectra

Finestructure imaged in our data occurs dominantly in the boundary layer between the Norwegian Atlantic Current (NwAC) and underlying Norwegian Sea Deep Water (NSDW). Reflection patterns in the seismic image match water masses mapped by the XBT/XCTD survey [Nandi et al., 2004]: an upper, variably reflective zone corresponds to the NwAC, which occupies the upper ~400 m; a lower non-reflective zone corresponds to the NSDW, which occupies ocean depths greater than ~600 m; and an intervening reflective zone corresponds to the boundary layer between the NwAC and the NSDW, where temperature decreases rapidly with depth from ~7°C to ~2°C. Nandi et al. [2004] showed that the seismically imaged finestructure has two causes: thermohaline intrusions, which follow isotherms,
and internal wave strains, which cross isotherms. However, internal waves have another manifestation in the seismic images: all reflections undulate slightly, forming “sinusoidal” patterns with wavelengths from tens to thousands of meters and wave heights of tens of meters (Figure 2). Such undulations are ubiquitous in all ocean images our group has produced. They cannot be artifacts of processing (e.g., stacking velocity), as they are not observed on the seafloor or underlying geological reflections. Nor can they be a result of constructive/destructive interference patterns from thin layers, as the undulating reflections do not show the waveform and frequency variations that would be associated with tuning effects [Widess, 1973].

[7] The most straightforward interpretation of the observed undulations is that they represent deformation of finestructure by the ambient internal wave field. Irreversible finestructure in the ocean is known to be displaced by internal waves [Gregg, 1977], as has been acoustically imaged in the upper ocean with high-frequency echo sounders [Proni and Apel, 1975; Stoughton et al., 1986]. We suggest that finestructure reflections represent “strain markers”; the seismic images represent acoustic snapshots that record displacements of those markers by internal waves. We test this assertion by calculating horizontal wave number spectra from the reflection displacements, ζ, and comparing them to the Garrett-Munk tow spectrum calculated following Katz and Briscoe [1979] (hereinafter referred to as GM76).

[8] Reflectors from isotherm-parallel finestructure were digitized at 6.25 m spacing (yellow lines, Figure 2) to calculate the horizontal wave number (k_x) power spectra of ζ (Figure 3). We used reflectors from two types of locations: open-ocean settings well above the seafloor, and zones of finestructure disruption within 10 km of the continental slope. Only reflectors that are roughly parallel to the reflective thermocline were selected for spectral analysis. The thermocline is identified as the ~100-m-thick band of bright reflectance that demarcates a temperature decrease from 7°C to 2°C [Nandi et al., 2004]. Other reflectors that cross-cut the thermocline are clearly identifiable as reversible finestructure caused directly by internal wave strains [Nandi et al., 2004] and were excluded from spectral analysis, which requires reflectors that are parallel to isopycnals. Reflectors were digitized on stacked sections using the “autotrack” feature in Paradigm’s Focus® software, which selects the nearest peak (or trough) within a user-selected time gate (we used 8 ms) by tracking waveforms between a set of initial interpretive reflector picks. The resulting reflector picks were edited to remove cycle skips and converted to depth using a constant sound speed of 1480 m/s. Vertical displacements of reflectors are obtained by removing a straight line fit over the extent (typically ~5–30 km) of each reflector. Horizontal wave number spectra of vertical displacement were calculated with a Welch Fourier transform using half-overlapping Hanning windows of maximum 1024 points (6400 m). Ensemble-averaged spectra are calculated over about 178 km (open-ocean) and 30 km (near-slope) total length of reflectors and further band-averaged at $\log(k_x) = 0.1$ intervals. The spectra are scaled by the survey-average buoyancy frequency at the depth-range covered by the reflectors: $N \sim 1.4 \text{ cph} \ (1 \text{ cycle per hour} = 2\pi/3600 \text{ s}^{-1})$ in the open ocean at depths of 200–1000; $N \sim 2.3 \text{ cph}$ near the slope at depths of 200–600 m. Because the isopycnal displacements are vertically correlated, some ensembles of reflectors covering the same horizontal span but different depths are not independent. About one third of the open-ocean reflectors and half of the near-slope reflectors are deemed independent, and this is accounted for in the calculation of the confidence intervals presented in Figure 3.

[9] The resulting horizontal wave number spectra show a remarkable match to the GM76 tow spectrum (Figure 3). In both locations, the resulting power spectra are red and have a power-law slope close to -2 (Figure 3). For the open-ocean reflectors, the energy level agrees with GM76 within the confidence intervals for wavelengths >300 m and lies within a factor of 2 of GM76 down to wavelengths of ~30 m. This agreement with the stationary, horizontally isotropic deep-ocean internal wave model strongly supports our argument that the seismic images capture the internal wave field. Both observed spectra level off at around 30 cycles per km (~33 m), where noise begins to dominate. The noise in the spectra comes from high-k_x noise that is visible as “chop” in some digitized reflector shapes (Figure 2a) and is related to the signal level of the reflectors; weaker reflections produce noisier spectral values at high wave numbers. However, because spectral levels are much lower at high k_x than at low k_x, even reflections with relatively low signal-to-noise can produce robust estimates of the total energy in the internal wave field over the wave number range shown in Figure 3.

[10] As the continental slope is approached, the reflection images show a marked change from smooth, continuous, gently undulating finestructure to more discontinuous, choppy finestructure that shows higher-amplitude undulations (Figure 2). These changes are reflected in the near-slope spectra, which show enhanced energy relative to the GM spectrum. This enhanced internal wave energy is likely associated with internal wave-sloping boundary interactions.

Figure 1. Location figure of the Norwegian Sea, showing seismic lines 30 and 32 and positions of expendable conductivity-temperature-depth (XCTD) probes (circles) used in this study. Bold lines show portions of seismic lines shown in Figure 2.
Our analysis demonstrates, and capitalizes on, the ability of reflection seismology to provide images of fine-structure, and estimates of internal wave energy, with great lateral detail. The agreement between reflector-derived k_x spectra and the expected GM76 spectrum strongly supports our contention that the reflections faithfully capture vertical displacements of the internal wave field. Near the continental slope, k_x spectra show enhanced internal wave energy, which could be caused by wave reflection and generation processes at the sloping boundary [Armi, 1978; Eriksen, 1985; Moum et al., 2002; Nash et al., 2004; Toole et al., 1994, 1997]. Here, there appears to be a change in spectral slope at around 3 cpkm after which the slope is close to that expected in the inertial-subrange of turbulence. The peak at this wave number, corresponding to a length scale of about 300 m, is likely the energy containing length scales feeding the cascade of energy into the inertial subrange. These

Figure 2. Seismic sections for Lines 30 and 32. Yellow lines show reflectors picked by “autotrack” algorithm for spectral analysis shown in Figure 3. Data are displayed so that peaks and troughs of reflections are red and blue, respectively, in the water column and grey and black in the solid earth. (a) Stacked seismic section of Line 30. The image shows a clear progression toward the slope from smooth, continuous fine-structure (inset left) to highly disrupted fine-structure (inset right). (b) Stacked seismic section of Line 32. As in Line 30, fine-structure changes from smoothly undulating to more discontinuous as the continental slope is approached.

4. Discussion and Conclusions

[11] Our analysis demonstrates, and capitalizes on, the ability of reflection seismology to provide images of fine-structure, and estimates of internal wave energy, with great lateral detail. The agreement between reflector-derived k_x spectra and the expected GM76 spectrum strongly supports our contention that the reflections faithfully capture vertical displacements of the internal wave field. Near the continental slope, k_x spectra show enhanced internal wave energy, which could be caused by wave reflection and generation processes at the sloping boundary [Armi, 1978; Eriksen, 1985; Moum et al., 2002; Nash et al., 2004; Toole et al., 1994, 1997]. Here, there appears to be a change in spectral slope at around 3 cpkm after which the slope is close to that expected in the inertial-subrange of turbulence. The peak at this wave number, corresponding to a length scale of about 300 m, is likely the energy containing length scales feeding the cascade of energy into the inertial subrange. These
observations suggest that seismic reflection images can provide important quantitative information on such processes as turbulence and boundary mixing.

[12] Our results imply that seismic reflection imaging constitutes an important new tool for remotely sensing and quantifying the internal wave field over large regions. The technique offers several unique advantages that can supplement the oceanographic measurements typically used to quantify the internal wave field: no other method is capable of imaging full ocean depths at such fine lateral detail. We suggest that "seismic oceanography" will be especially useful in quantifying the internal wave field when combined with more traditional measurements, such as time series from deep moorings, so that frequency and horizontal wave number spectra can be produced and compared. Such joint seismic/PO measurements could quantify and map regions of enhanced mixing and turbulence in great detail. With proper calibration, seismically determined wave number spectra from the extensive marine seismic data sets in existence can contribute significantly toward a global climatology of internal wave energy in the ocean.

[13] Acknowledgments. This work was funded by the NSF's Physical Oceanography and Ocean Drilling programs. IF was funded by the Norwegian Research Council, grant 147493/432. This is publication Nr. L15604.

Figure 3. Horizontal wave number spectra of vertical displacement inferred from digitized reflectors from open ocean (squares), near slope (dots), all scaled by the average buoyancy frequency, N, covering the representative depth range of the chosen reflectors. Vertical bars are 95% confidence intervals. The GM76 tow spectrum is shown as a band for the observed range of N = 1 – 2.5 cph. The dashed line shows the −5/3 slope of the inertial subrange of turbulence, for reference.

References

Garrett, C. (2003), Internal tides and ocean mixing, Science, 301, 1858–1859.

W. S. Holbrook, Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA. (stevh@uwyo.edu)

I. Fer, Bjerknes Centre for Climate Research and Geophysical Institute, University of Bergen, N-5007 Bergen, Norway.